Steel decarbonisation challenge

GFSEC STAKEHOLDER WORKSHOP

CONNECTING THE DOTS ON STEEL DECARBONISATION INITIATIVES: CONTRIBUTING TO A GLOBAL INCLUSIVE DIALOGUE

Paris, September 21st.

Jose Moya

EC, Joint Research Centre, Petten
Decarbonisation of EII in JRC

Technology innovation enabling a low-carbon industry...

- Cement (2010)
- Steel (2012)
- Aluminium (2015)
- Chemicals (2017)
- P&P (2018)

Production costs in the EU and third countries

- EII (2016)
- Steel (2020)

Contributions to:

- DG CLIMA
- DG GROW
- DG RTD
- DG ENER
- DG TAXUD
- DG ENV

Steel decarbonisation Technologies (2021)

Steel greenhouse gas intensities of the EU its trading partners (2022)
After the CBAM transitional phase

In its first phase, the CBAM will focus on goods most at risk of carbon leakage:

- Cement
- Iron & Steel
- Aluminium
- Fertiliser
- Electricity

CBAM charge** = CBAM certificates * certificate price - carbon cost paid abroad

GHG intensity * amount imported

Verified value or Default value

During the transitional period free allocation from the ETS is subtracted from the CBAM charge
JRC Methodology for default values in steel

Energy Balance

- Iron and Steel [1]
 Final energy consumption of the industry
- Blast Furnaces and Coke Ovens [1]
 Transformation and own use as reported under energy sector
- Autoproducer and Main activity producer [1]
 Autoproduction and main activity production of electricity and heat with coke oven gas, blast furnace gas and other recovered gases

Emission Factors

- Emission Factors for Stationary Combustion in Manufacturing Industries [3]
 Default emission factor CO₂ per fuel sources
- Emission per kWh of electricity and heat [2] – Scope 2
 Optionally include indirect emissions

Carbon Emissions

<table>
<thead>
<tr>
<th>Country</th>
<th>CO₂ (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>2,962,853,623</td>
</tr>
<tr>
<td>European Union 27</td>
<td>151,925,122</td>
</tr>
<tr>
<td>Belarus</td>
<td>814,282</td>
</tr>
<tr>
<td>Brazil</td>
<td>65,136,545</td>
</tr>
<tr>
<td>China</td>
<td>1,579,085,441</td>
</tr>
<tr>
<td>India</td>
<td>342,369,700</td>
</tr>
<tr>
<td>Japan</td>
<td>147,595,179</td>
</tr>
<tr>
<td>Korea</td>
<td>92,328,580</td>
</tr>
<tr>
<td>Norway</td>
<td>1,271,454</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>176,475,007</td>
</tr>
<tr>
<td>Serbia</td>
<td>3,231,199</td>
</tr>
<tr>
<td>South Africa</td>
<td>26,867,956</td>
</tr>
<tr>
<td>Switzerland</td>
<td>152,904</td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td>33,414,985</td>
</tr>
<tr>
<td>Turkey</td>
<td>30,936,522</td>
</tr>
<tr>
<td>Ukraine</td>
<td>50,739,307</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10,907,733</td>
</tr>
<tr>
<td>United States</td>
<td>76,827,294</td>
</tr>
</tbody>
</table>

[1] IEA
[2] IEA
[3] IPCC
Results – Production route emissions

Integrated route

EAF route

JRC estimate
Thanks and stay in touch!